Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Chemosphere ; 305: 135291, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35760128

RESUMEN

Many environmental pollutants caused by uncontrolled urbanization and rapid industrial growth have provoked serious concerns worldwide. These pollutants, including toxic metals, dyes, pharmaceuticals, pesticides, volatile organic compounds, and petroleum hydrocarbons, unenviably compromise the water quality and manifest a severe menace to aquatic entities and human beings. Therefore, it is of utmost importance to acquaint bio-nanocomposites with the capability to remove and decontaminate this extensive range of emerging pollutants. Recently, considerable emphasis has been devoted to developing low-cost novel materials obtained from natural resources accompanied by minimal toxicity to the environment. One such component is cellulose, naturally the most abundant organic polymer found in nature. Given bio-renewable sources, natural abundance, and impressive nanofibril arrangement, cellulose-reinforced composites are widely engineered and utilized for multiple applications, such as wastewater decontamination, energy storage devices, drug delivery systems, paper and pulp industries, construction industries, and adhesives, etc. Environmental remediation prospective is among the fascinating application of these cellulose-reinforced composites. This review discusses the structural attributes of cellulose, types of cellulose fibrils-based nano-biocomposites, preparatory techniques, and the potential of cellulose-based composites to remediate a diverse array of organic and inorganic pollutants in wastewater.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Contaminantes Químicos del Agua , Celulosa/química , Humanos , Estudios Prospectivos , Aguas Residuales , Contaminantes Químicos del Agua/química
2.
Micromachines (Basel) ; 13(5)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35630135

RESUMEN

The current study demonstrates a sophisticated and environmentally friendly synthesis of zinc oxide nanoparticles (ZnO-NPs) for a range of biological and environmental applications using Monotheca buxifolia as a bio-source. At the nanometer scale, a simple aqueous extract from Monotheca buxifolia was used to convert Zn into stable elemental zinc (Zn0). With an average size of 45.8 nm and a spherical shape, the NPs were stable and pure. The nanoparticles studied here were tested in vitro for bactericide, fungicide, biocompatibility, leishmaniasis, anti-diabetic effect, antioxidant effect, and anti-Alzheimer's effect. According to our results, Monotheca buxifolia mediated ZnO-NPs are highly effective against spore-forming fungal strains and MDR bacterial strains. All examined bacterial isolates of UTI (urinary tract infection) were resistant to non-coated antibiotics; however, adding 1% of the produced ZnO-NPs to the treatments increased their bactericidal activity significantly. The NPs also showed dose-dependent cytotoxicity against Leishmania tropica parasites, with an LC50 of 248 µg/mL for promastigote parasites and 251 µg/mL for amastigote parasites. In addition, a significant inhibition of α-glucosidase, α-amylase, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) was discovered, indicating anti-Alzheimer's and anti-diabetic effects. The biocompatibility of the particles with human red blood cells was also observed. Due to their environmentally friendly production, biological safety, and exceptional physicochemical properties, ZnO-NPs could be used as a new competitor for several biological and environmental applications.

3.
Saudi J Biol Sci ; 28(5): 3031-3036, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025179

RESUMEN

This research study is mainly focused to evaluate the anti-parasitic, insecticidal, cytotoxic and anti-alzheimer potential of various leaf extracts of Ajuga bracteosa Wallich ex Bentham. 04 different extracts were prepared using solvent of different polarity to determine the best candidate for potent bioactivity i.e. n-hexane (NH), Ethyl acetate (EA), Ethanol (EL) and Chloroform (CH). Concentrations of each extracts were made specified for all activities. All extracts were exploited for broad range of biomedical applications including leishmaniasis, in vitro anti-Alzheimer, insecticidal and cytotoxic studies. Our results showed that A. bracteosa n-hexane extract was highly active against Leishmania Tropica with significant inhibition of 58 ± 1.61 for promastigote and 63 ± 2.29 for amastigote at 1000 µg/mL. Furthermore, promising anti-alzheimer activity acetylcholinesterase (AChE) 46 ± 0.83 and butrylcholineterase (BChE) 49 ± 1.17 was noted for n-hexane. The insecticidal potential of these extracts were test against five different insects (Rhyzopertha dominica, Trogoderma granarium, Tribolium castaneum, Sitophilus oryze, and Callosobruchus analis). The higest mortality rate of insecticidal activity was recorded by n-hexane followed by Ethyl acetate whereas ethanol extract was found to be less effective against all the test species. Significant cytotoxic potential of each plant sample against Artemia salina thus aware us for further detailed research to find out novel drugs. Based on our results we believe that Ajuga bracteosa could be used to develop as a potential botanical insecticide against different insect and pests, such as aphids as well as an excellent source for the compound isolation as anti-tumor agent.

4.
ACS Omega ; 6(14): 9709-9722, 2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33869951

RESUMEN

In the present work, bioaugmented zinc oxide nanoparticles (ZnO-NPs) were prepared from aqueous fruit extracts of Myristica fragrans. The ZnO-NPs were characterized by different techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet (UV) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), and thermogravimetric analysis (TGA). The crystallites exhibited a mean size of 41.23 nm measured via XRD and were highly pure, while SEM and TEM analyses of synthesized NPs confirmed their spherical or elliptical shape. The functional groups responsible for stabilizing and capping of ZnO-NPs were confirmed using FTIR analysis. The ζ-size and ζ-potential of synthesized ZnO-NPs were reported as 66 nm and -22.1 mV, respectively, via the DLS technique can be considered as moderate stable colloidal solution. Synthesized NPs were used to evaluate for their possible antibacterial, antidiabetic, antioxidant, antiparasitic, and larvicidal properties. The NPs were found to be highly active against bacterial strains both coated with antibiotics and alone. Klebsiella pneumoniae was found to be the most sensitive strain against NPs (27 ± 1.73) and against NPs coated with imipinem (26 ± 1.5). ZnO-NPs displayed outstanding inhibitory potential against enzymes protein kinase (12.23 ± 0.42), α-amylase (73.23 ± 0.42), and α-glucosidase (65.21 ± 0.49). Overall, the synthesized NPs have shown significant larvicidal activity (77.3 ± 1.8) against Aedes aegypti, the mosquitoes involved in the transmission of dengue fever. Similarly, tremendous leishmanicidal activity was also observed against both the promastigote (71.50 ± 0.70) and amastigote (61.41 ± 0.71) forms of the parasite. The biosynthesized NPs were found to be excellent antioxidant and biocompatible nanomaterials. Biosynthesized ZnO-NPs were also used as photocatalytic agents, resulting in 88% degradation of methylene blue dye in 140 min. Owing to their eco-friendly synthesis, nontoxicity, and biocompatible nature, ZnO-NPs synthesized from M. fragrans can be exploited as potential candidates for biomedical and environmental applications.

5.
Int J Biol Macromol ; 182: 866-878, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33838191

RESUMEN

In this investigation, chitosan-coated nickel selenide nano-photocatalyst (CS-NiSe) was successfully prepared through the chemical reduction method. FTIR spectroscopy confirmed the synthesis of CS-NiSe nano-photocatalyst. Further, XRD analysis exhibited a monoclinic crystalline phase of photocatalyst with a crystallite size of 32 nm based on Scherer's equation. The SEM micrographs showed that the photocatalyst has an average particle size of 60 nm. The bandgap of CS-NiSe was (2.85 eV) in the visible region of the spectrum. Due to this reason, the CS-NiSe was applied under solar light illumination for the photocatalytic activity of Erythrosine and Allura red dyes. The CS-NiSe presented the highest degradation efficiency of 99.53% for Erythrosine dye in optimized experimental conditions of 100 min at 30 °C, 30 ppm concentration, pH 5.0, and 0.14 g catalyst dose. For Allura red dye, a high degradation of 96.12% was attained in 120 min at pH 4.0, 100 ppm initial dye concentration, 35 °C temperature, and 0.1 g catalyst dose. The CS-NiSe showed excellent degradation efficiency and reduced to (95% for Erythrosine and 91% for Allura red dye) after five consecutive batches. Moreover, the statistical and neural network modelling analysis showed the significant influence of all studied variables on dyes degradation performance. The results demonstrated that CS-NiSe exhibited excellent photocatalytic performances for Erythrosine and Allura red dyes and could be a better photocatalyst for removing these dyes from industrial effluents.


Asunto(s)
Compuestos Azo/química , Quitosano/análogos & derivados , Descontaminación/métodos , Nanopartículas/química , Níquel/química , Compuestos de Selenio/química , Eritrosina/química
6.
Nanotechnology ; 32(6): 065101, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33119546

RESUMEN

The current study reports advanced, ecofriendly and biosynthesized silver NPs for diverse biomedical and environmental applications using Flammulina velutipes as biosource. In the study, a simple aqueous extract of F. velutipes was utilized to reduce the AgNO3 into stable elemental silver (Ag0) at a nanometric scale. The NPs had average size of 21.4 nm, spherical morphology, and were highly stable and pure. The characterized nanoparticles were exploited for a broad range of biomedical applications including bacteriocidal, fungicidal, leishmanicidal, in vitro antialzheimer's, antioxidant, anti-diabetic and biocompatibility studies. Our findings showed that F. velutipes mediated AgNPs exhibited high activity against MDR bacterial strains and spore forming fungal strains. All the tested urinary tract infection bacterial isolates, were resistant to non-coated antibiotics but by applying 1% of the synthesized AgNPs, the bactericidal potential of the tested antibiotics enhanced manifolds. The NPs also exhibited dose-dependent cytotoxic potential against Leishmania tropica with significant LC50 of 248 µg ml-1 for promastigote and 251 µg ml-1 for amastigote forms of the parasite. Furthermore, promising antialzheimer and antidiabetic activities were observed as significant inhibition of α-amylase, α-glucosidase, acetylcholinesterase (AChE) and butrylcholineterase (BChE) were noted. Moreover, remarkable biocompatible nature of the particles was found against human red blood cells. The biosynthesized AgNPs as photocatalyst, also resulted in 98.2% degradation of indigo carmine dye within 140 min. Owing to ecofriendly synthesis, biosafe nature and excellent physicochemical properties F. velutipes AgNPs can be exploited as novel candidates for multifaceted biomedical and environmental applications.


Asunto(s)
Antiinfecciosos/farmacología , Flammulina , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/química , Antifúngicos/química , Antifúngicos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Relación Dosis-Respuesta a Droga , Dispersión Dinámica de Luz , Flammulina/química , Flammulina/metabolismo , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Leishmania tropica/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Rastreo , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Plata/administración & dosificación , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
7.
J Biomed Nanotechnol ; 16(4): 492-504, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32970981

RESUMEN

To minimize the hazardous effect of physical and chemical synthesis of nanoparticles we focused on the green synthesis of nanoparticles. Nanotechnology is a research hotspot and catch great attention because of its versatile applications in medical, biosciences and engineering fields. Purpose of our recent study is to synthesize bio-inspired metallic silver NPs by root mediated Zingiber officianale extract. The synthesized Ag-NPs were further characterized by using UVVisible spectroscopy, XRD, EDX, SEM, TEM and DLS techniques. The extent of crystallites were confirmed by X-ray diffraction. SEM and TEM revealed the morphological features with size of nanoparticles between 17.3 and 41.2 nm. FTIR analysis confirmed the capping of nanoparticles by bio active constituents present in Zingiber officinale extract. Later EDX confirmed the elemental composition of nanoparticles. Zeta potential, PDI and hydrodynamic size of Ag-NPs were confirmed by DLS. The synthesize Ag-NPs possess eminent biological potency against bacterial and leishmanial strains. Moreover considerable anti-diabetic, anticancer, antioxidant and biocompatibility nature of Ag-NPs was elucidated. The highest antioxidant activity of 50.61± 1.12%, 38.22 ± 1.18% and 27.39 ± 0.92 at 200 g/mL for TAC, TRP DPPH and was observed respectively. Ag-NPs exhibit potent leishmanicidal activity of 80% ± 1.4 against promastigotes and 77% ± 1.6 against amastigotes cultures of L. tropica. Highest antidiabetic activity 30 ± 0.77% recorded at 200 µg/ml. Highest Brine shrimps cytotoxicity of Ag-NPs was 60 ± 1.18 at 200 g/ml. Maximum dye degradation for Ag-NPs was recorded as 94.1% at 140 minute. All UTI isolates were resistant to antibiotics not coated with Ag-NPs. By applying 1% of Ag-NPs highest activity was recorded as 25 ± 1.58 mm against K. pneumoniae. Maximum zone of inhibition for Ag-NPs coated with Imipenem antibiotics 26 ± 1.5 mm against K. pneumoniae and coated with Ciprofloxacin 26 ± 1.4 m against S. aureus were measured. Last but not least high biocompatible nature of Ag-NPs was observed against fresh RBCs making the ecofriendly biosynthesized silver NPs a multi-dimensional candidate in biomedical field.


Asunto(s)
Nanopartículas del Metal , Zingiber officinale , Antibacterianos/farmacología , Extractos Vegetales/farmacología , Plata , Staphylococcus aureus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA